
Int. J. Solid, Structures Vol. 20. No.3. pp. 267 276. 1984
Prinled in Greal Britain.

0020-7683/84 $3.00 + .00
Cl 1984 Pcrpmon Press Ltd.

ON SINGULARITIES DUE TO A CONCENTRATED
PRESSURE LOADING OF A CYLINDRICAL CAVITYt

R. PARNES
Department of Solid Mechanics, Materials and Structures, Faculty of Engineering,

Tel-Aviv University, 69978 Ramat-Aviv, Israel

(Received 27 December 1982)

Abstract-A concentrated pressure loading applied to the surface of a cylindrical cavity within an
elastic medium yields stress and displacement fields which are expressed by means of infinite
integral representations. The resulting singularities in the stress and displacement components in
the vicinity of the applied load are derived from these integrals and their evaluation leads to simple
analytic expressions. The logarithmic and inverse power singularities Obtained as well as jumps in
the displacements are observed to coincide with those of the F1amant problem, as a limiting case.

I. INTRODUCTION

The problem ofan elastic medium containing a cylindrical bore ofradius a on whose surface
a concentrated pressure is applied in the form of a circular line load was considered in[I].
Expressions for the stress and displacement fields were presented as integral representations
over an infinite range 0 S IX < 00, where IX is a parameter representing the ratio ofa to a wave
length. The integrals were evaluated and numerical results for the non-vanishing stress and
displacement components along the radial axis and the bore surface were presented.

It was observed, however, that near the point ofapplication of the applied concentrated
loads, the convergence of the integrals was less rapid and that singularities occurred, as
expected, in this zone. Accurate results were nevertheless given for points away from the
point of loading.

In the present investigation, the singularities existing near the point of load application
are determined, and their evaluation leads to simple analytic expressions. The results
permit establishing some more general conclusions concerning the behaviour of the
medium at points in the neighborhood of the applied traction. In addition, the results are
applicable to the determination of stresses in the context of hydraulic fracture problems.

2. EVALUATION OF THE SINGULARITIES.

We consider an infinite isotropic elastic medium (whose shear modulus is Jl and with a
Poisson ratio v) containing a cylindrical bore of radius r =a. The medium is referred to a
non-dimensional cylindrical coordinate system (p = rla, 9, , = z/a). An axi-symmetrical
radial line load of intensity P is applied along a circle of the bore at , =0 (Fig. I). The
resulting boundary conditions are then

where ~(') is the Dirac-delta function.
The axi-symmetric displacements are denoted by

u(p, 0 =wf,+ uk.

and (T1j (i,j = r, 9, z) denote the stress components.

(1)

(2)

tThis work was initiated while the author was on leave at Laboratoire de Mecanique des Solides, Ecole
Polytechnique, Palaiseau, France.
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Fig. I. Geometry of problem.

The non-dimensional displacement and stress fields are then given by

JlU j =! ia> Q ( ) {cos exC} d
P

I ex, P . r ex
1t 0 sm cc..

aUij =! raJ Q. (ex, ) {c~s exC} dex
P 1t Jo Ii p sm ex'

(3)

where, in the above, u and Un are associated with sin exC and the non-vanishing remaining
quantities, (w, U", U/HJ' u::) with cos exC. The expressions for QI and Q" are presented in[l]
and are repeated here for convenience and consistency of nomenclature:

1
QM = 2D {pexK.K\(exp) - 2(1 - v)K.Ko(exp) + exKoKo(exp)}(a)

1
Q.. =2D {pexKoKo(exp) + 2(1- v)K\K.(exp) - ex KoK.(rxp)}(b)

Q,,= ~{rx2KoKo(rxP)+~KoK\(exP)-rxK.Ko(exP)-[2(I-V)/P+ex2p ]K.K\(exP)}(C)

1 { rx 2(1-v) }
Q/HJ =- - - KoK\(exp) + K.K.(rxp) + (1 - 2v )rxK.Ko(rxp)D p p

rx
Q:: = D {rxpK.K.(exp) - 2K\Ko(exp) - ex K.K\(exp)}<e)

ex 2

Q,: = D {KoK1(rxp) - p K1Ko(rxp)}(f)

tFor simplification. the following notation is used here and below: K. _ K.(IJ).

(4)t
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where

D =[tx 2+ 2(1 - v)]Ki - IX2K~. (5)

In the above, Kn represent the modified Bessel functions of order n.
The infinite integrals appearing in eqn (3) (which we d~note in general by S; or Sij) can

be evaluated by choosing prescribed finite values of IX, IX =1Xo, thus separating the infinite
range into two subranges 0 S tx S IXo and IXo S IX < 00.

The resulting integrals in the two ranges, denoted by S(l) and S(2) respectively, such that

S =S(I) + S.l2l or S· = S"<I) + S·(2)
I I I "" j'

(6)

are then integrated in tum: the S(I) integrals are integrated numerically and asymptotic
approximations to the S(2) integrals are obtained as described below. The integrands of
S(I) are found to be bounded and well-behaved in all cases for p ~ 1 and , ~ 0 and no
particular problems arise in the numerical integration procedure ever the range 0 < IX S 1Xo.

If IXo is chosen sufficiently large (1Xo ~ 1), ~hen the K,. functions appearing in eqns (4)
may be represented, for IX > 1Xo, by their asymptotic expansions[2]

(7a)

where

(7b)

Upon substituting in eqn (4) and noting that the numerators appear as products of
Kn(IX) K..,(txp), the integrals S(2) for all the desired quantities, are seen to have the general
form

S(2)=~iao -(p-l)G1 ( ) {cos tx'} de g tx, p . r IX
7l: "0 sm IX..

(8)

where g(IX, p) is a function expressed as a Laurent series in powers of IX.

Qualitatively, we immediately observe that the decay in the integrands will be rather
fast provided p is sufficiently greater than unity. However if p approaches unity, it becomes
obvious that the decay will be rather slow and would depend on the particular Laurent
series representation ofg(tx, p). Thus, as may be seen from eqn (8), problems are expected
to arise in the convergence of the S(2) integrals as p -+ 1. Indeed, in evaluating the integrals
S(2) presented in [1], convergence was found to be sufficiently rapid for p >1.1 and' >0.1.
For such cases the S(2) integrals were found to represent a small contribution to the total
integrals S. However, as p -+ 1 and' -+0, the S(2) integrals become increasingly large and,
in fact, these integrals will be shown to contain the singularities which occur in the region
near the point of the applied loads. Thus, the slow convergence of the S(2) integrals as p -+ 1
or' -+0 is, irf a sense, a reflection of the existence of the singularities. We therefore seek
to extract the singularities from the integral expressions for S(2), and proceed as follows.

Using eqns (7) for IX ~ IXo and retaining the first three terms of the representation, the
expansions of the Q integrands which appear in eqn (4) can, ·after some manipulation,
(details of which are given in the Appendix) be expressed in the following form:
For the displacements:

For the stresses: (9)
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(10)

(llb)

Values of the p coefficients are given in the Appendix.
Now, from eqn (6), we may rewrite eqns (3) as

and

a;u=;[L«OQu(<<,P){:~:~}ds+ f: Qv{«,P){:::f}dlX}

It is noted that the expressions for QI and Qq. given by eqns (9) are valid only in the
right hand integrals (rio to (0) of eqns (11).

Upon examining eqn (9), it is clear that the main contribution to the S('J.) integrals are
due to the p. and p<O) terms. We therefore define, for the displacements:

(12a)

and for the stresses

(12b)

The functions ~ and Ru are observed to be well behaved and bounded for all
0< lX ~ «0. We now rewrite eqns (11) as follows:

JlUI =~ [ r~ (Qj _ R) {c~s «C} dlX + [00 (Q._ R) {c~s lXC} dlX + [00 R. {C~S lXC} dlXJ
P 1t Jo I S1O«C J«o' I S10 «C Jo I 8m «C

(13a)

artU 1 [1«0 {cos «C} f.CO {cos ftC} l CO {cos rtC} ]- = - (Qij- RIJ) . r d« + (Qu- Rij) . r d« + Rij . r dlX .
P 1t 0 S1O«.. «0 S1OlX.. 0 S1O«..

(l3b)

From eqns (9) and (12) we then obtain

JlU/ =![ [~(Qj_RJ{~S«C}d« +p-l/2ppl [OOe-<P-1)l'l {C~SlX'}d«
P 1t Jo sm <XC J«o <X S10 rtC

+p-l/2P(0) [co e-<P-I)a{C~SlX'}d«J (14a)
j Jo 8m a.C

artlj =! [ [«0 (Q _ R.) {~s lX'} doc +P-1f2fJ~ll [CO e-<P-1)I'l {~S OCC} drt
P 1t Jo IJ i) smOtC IJ J«o Ol smOlC

+p-I/2 [<Xl tR,.OC + R(l!ne-<p-l)l'l{C~SOl'}dOlJ. (14b)Jo LY!/ f'!/ J sm Ol{

It is noted that the first right hand integrals appearing in eqns (14) are again well
behaved and bounded and create no difficulties when a numerical integration procedure
is performed over the finite range 0 ~ Ot ~ rio.
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Thus, eqns (11) are finally replaced by

I 1"0 {C} [-1/2 P(1)] -1/2
QU/j = _ (Qi" _ R.) c~s lX dlX + P /j 1+ _P- [JJ/j.r. + P\~) r 2l
P 1t 0 ~ lJ sm lXC 1t 1t lJ

where

f.
ae e-(P-Ip {cos lXC}

1= . dlX"0 tx sm lXC

and

rl(p,C)= rae e-(p-IP{~StxcC}dtxJo sm tx

1ae {cos txC}r(p 0= lXe-(p-IP. dlX.
2, 0 sm txC

The integrals r l and r 2 are easily integrated[3]

rae _(p_IP{COStxC}d _ 1 {(p -I)}Jo e sintxC tx - [(p -1)2+C2] C

rae _(p_Ip {COS txC} 1 {[(p-I)2-C2]}Jo tx e sin lXC dtx =[(p _ 1)2 + C2]2 2(p - I)C .

(ISa)

(ISb)

(16)

(l7a)

(17b)

(18a, b)

For arbitrary values of P and C, the integrals I, in the range lXo to 00, in general, cannot
be integrated analytically. However, along the radial line C= 0 and the boundary P = I,
these integrals yield analytic expressions. We therefore investigate these two cases further.

(a) Behaviour along C=0 as p-.I
For this case, u = Un = 0 while the remaining components become

(19a)

(19b)

Using the definition of the exponential integral function[4],

(20)
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and noting that

we rewrite eqns (19) as

R. PARNES

(21)

1 [i"O P - 1/2 P~) P - 1/2 P~?)
JlW/P =- (Q... - R",) da + E1[(P - l)ao] + ( 1)

1t ° 1t 1tp-

1 [ roo P -1/2 PV) P - 1/2
a(1ij/P = 1c Jo (Qij - Rij) dlX + 1t E.[(P -lj/Xo] + -1t-

X [f3~) r. +Po r21.

Now, E1[(p - l)/Xo] can be represented by the series expansion[4]

(22a)

(22b)

where "I =0.5772157.... Hence we observe that this term produces a logarithmic singu­
larity as p -+ 1. Examining the last term of eqn (22a) we note that since P~) - p - I, no
further singularity occurs in the displacement w. However for the stresses (1ij' the last term
appearing in eqn (22b) may produce strong singularities upon taking the
Limp-l/2rR~O)r +R",r1

If' " I I' " 2J'p-I

We denote the singularities for the various quantities by 1:; or 1:ij. Using the values of
the coefficients of PIn) and P~), n =0, 1, as given by eqns (A6) and taking the limit as p -+ 1,
we obtain.

P
1:... =-- (1 - v) In (p -1)-00

1tJl

2P ) I1: =--(p-l---oo
" 1ta

P {-oo,V:FO1:00 = -- [(2 + v - 4v 2) In (P -1) +2v (p - 1)-1]_
1ta +oo,v=O

P
1: =-- (1- 2v) In (P - 1)-00.:: 1ta

(24)

(25a)

(b) Behaviour along boundary p = 1 as C-0
For this case, the prescribed boundary conditions (C > 0) are (1" = (1r: = 0, while

(1" = - P/a 0({) is the prescribed singularity at , =0
With p = 1, eqns (15) and (16) yield

JluJP =! roo (Q; _ R;) {c~s IX;} da + PP) fCC ! {c~s a;} dlX + PIO) r ,
1t Jo sm IX.. 1t "0 IX sm IX.. 1t

/P _ 1 i"O (Q R ) {COS a'} d PV) fCC! {cos IX'} d PlY) ra(1.. -- .. -" a +- a +- 2
" 1t ° " "sina' 1t "0 a sinlXC 1t

since, from eqns (A7), Po =0 at p = 1 for all i and j.
Using the definitions of the cosine- and sine integrals respectively [4]

fCC cos x foe sin x
Ci(lXo) =- -- dx, si(/Xo) =- - dx

"0 X "0 X

(25b)

(26a, b)
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and proceeding as before, we obtain for the displacements

I 1"0 (1- 2v)
JJ.U/P = - (QII- RII) sin IX' dIX + 2 si(<<o{)
non

I i"o (1- v)Jlw/P = - (Qw- Rw) cos IX' dIX - - Ci(<<o{)
non

(27a)

(27b)

where, in the above, the proper coefficients for Pln)l, _I (n =0, I), from eqn (A7), have been
inserted.

For the non vanishing stresses, we obtain, (upon noting that R~,_I = P~) I, _I) from
eqn (13b), and upon inserting the definition of eqn (26):

I 1"0 PV) P~) (p = I) lao
(J;P/P =- (Qij - Rij) COU, dIX - - Ci(<<o{) + '} cos IX' dIX.

1t 0 1t 1t 0
(28)

We first observe that s;(<<o{) appearing in eqn (27a) is always bounded. Consequently
no singularity appears in the longitudinal displacement u as '-0. Using the series
representation[4]

(29)

we observe that a logarithmic singularity occurs in the displacement wand in the stresses
(Jij (provided PV1:;/: 0) as '-0.

The last term"appearing in eqn (28) is recognized as the integral representation of the
Dirac-delta function 15(0 [5]; i.e.

I lao- cos IX' dIX =15 ({).
n o'

(30)

Since 15({) = 0 for' :;/: 0, we disregard this term for all , > O.
Using then, eqn (29) and the values of P~) (p = I) given in eqn (A7) we obtain the

following singularities:

I:II =O

P
I:w =-- (I - v) In '-+00

nJl

P
I:66 = -- (2 + v - 4v2

) In'-oo
no

P
I:zz = -- (I - 2v) In' -00.

no

(31)

3. DISCUSSION

The singularities for the displacement and stress components as p-I and' -0 are given
by eqns (24) and (31) respectively. In addition, at the point of loading (p = I, , = 0),
Dirac-delta singularities of strength P~) exist for the non-vanishing stress components.

In the region of loading, it is observed that along the radial line , =0, .the radial
displacement has a logarithmic singularity while strong singularities, O[(P - I)-I], exist for
the stress components (J" and (I" (when v > 0). The singularities are observed to satisfy the
stress-strain relations in the neighborhood ofthe applied load. It is instructive to verify these
relations. For example, in examining the relationE" = I/E[(J" - v«(J" + (In») we observe that
for the strain f", in the case v> 0, the effect of (J" cancels with the dominant singularity in
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0'1/9; thus this strain component results physically due to the predominant behavior of 0'1/9 and
O':z. It is ofinterest to observe, too, that for v = 0 the singularity in the stress 0'1/9 is weakened,
becoming logarithmic.

Along the boundary p = I, the radial displacement and stress components all have
logarithmic singularities as , -+0, while no singularity occurs in the longitudinal displace­
ment u. However, from eqn (27a) we note, upon letting C-+0, that

r JlU I 1- 2v
{~p p_1 =--4- (32)

since si(x-+O) = -1t/2 [4]. This result appears to be in contradiction with eqns (3) and (4a)
which lead to u(C =0) =0, and therefore implies a jump in uat ~e point of loading. To
investigate this phenomenon, we examine the expression for ou/oC. From eqns (3)

_pJl ou/ac I =~ fft) exQu(ex,l)cosexC dex.
p=1 1tJo

Following the same method as given above and in the Appendix, we obtain

au I 1 [1"0 I P(21 I pOl I!:!.. - = - (exQu - p~l) cos exC dex - _u Ci(rxoO +_upac I' _ I 1t 0 p _ I 21t I' _ I 7t p _ I

X foft) cos exC dcx

where

p~21 I =5/4 - v(II/2-4v).
1'-'

(33)

(34a)

(34b)

As before, the Ci term gives a logarithmic singularity. Again we observe, from eqn (30),
that the last term represents the Dirac-delta function. Thus, we have

au I == pp~11 I c5(C)
ac 1'_1 Jl 1'-1

{-o

Using the fundamental property,

f{c5(x)dx = I, C>°
-{

we obtain

f{ f' au p Idu = - dC =-p~1)_{ -{ ac Jl 1'_1

i.e.

p
u(O - u( - 0 = - 2Jl (1- 2v).

(35)

(36)

(37a)

(37b)

Since u(O = -u( - C), we recover eqn (32). Thus, although no singularity in u occurs
at the point (p = I,' = 0), a jump in the displacement does indeed exist and is due to the
Dirac-delta in the derivative. Such jumps in displacements are known to occur under
concentrated loads (see, e.g. [6]).

Finally, it is of interest to note that the classical Flamant problem[7] represents the
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degenerate (plane stress) counterpart of the present problem as 0-+00. Upon making the
appropriate adjustments in the material constants, the logarithmic and inverse power
singularities as wen as the jump in the longitudinal displacement of the two solutions are
seen to coincide.
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APPENDIX
Asymptotic expansion of the Q integrands. Results for fJ coefficients

Using the asymptotic expansions of the K" functions (up to the third term), given by eqn (7), the products
of the various K. functions appearing in eqns (4) and (S), upon collecting powers of ex, are

A
K"K'(exp) ... - [1 + a"dex + a,afex 2 + a.Jex,], n ... 0, I

ex
A

KoK',(exp)'" - [I + bodex + boJex 2 + bOl/ex)]
ex

K.KJ.exp) = ~ (1 + bll/ex + b.'/ex2 + b.:Jex']
ex

where

and

I 1 1
Dol'" -g (I + lip), Do2'" 128 (9 + 21p + 91p'), Do3'" -1024 (75 + 91p + 91p2+ 751p3)

3 I 1
all ... 8(I + lip), au'" 128 (-IS + 18/p - ISlp'), au'" 1024 (lOS - 4SIp - 4SIp2 + IOSlp 3)

1 I 1
bot ... g(-I + 31p), b02 ... 128 (9 - 61p - ISlp'), b03 '" 1024 (-7S + 27/p + 151p2 + 10Slp3)

I I 1
bll ... i (3 - lip), b12 ... 128 (-IS - 61p + 91p2), b13 ... 1024 (1 OS + ISlp + 27/p2 -7Slp)

(A2)

(A3)

Substituting in eqn (S),D ... (ll/2)e-20 {I + (7/4 - 2v)/ex +...} ... (1l!2) e-20 {I - (7/4 - 2v)/ex.. .}-I (A4)

for ex ~ I.
Substituting eqns (AI) and the last of (A4) in eqns (4) and collecting terms of the same order, the integrands

QI and Qu become, for I <c ex:

where

QI ... P -1/2 e- (P - 1)0 {fJjOl + fJlll/ex }

Qii'" P-1/2 e-(P-Ill {fJ: ex + fJ~Ol + fJVl/ex}

I
fJ<:'''' 1/2(p - I), fJ~l ... 16 (2 - Up + IIp)+ vp

I
fJ<: ... 1/2(p - I), fJ~l ... 16 (30 - lip - 31p) - v(2 - p)

I
fJ:'" 1-P,fJ~"'g(-26+7/p + I1p) - 2v(p -I),

I 3vfJlIl ... -(279+99p -43Slp +S7/p')--(4+p -SIp)
" 128 4

fJ:' ... O,J1~'" I-lip -2v

I v
fJW ... - (-11 + JOlp - 3/p2) +- (19 - ISjp -16v)

8 4

I
]

(AS)

(A6a)

(A6b)

(A6c)

(A6d)
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I 1
P:Z=p -1'P~~)=8(2-llp + l/p)-2v(l-p)

I v
P~~) = 128 (249 - 99p - 13/p - 9/p2) - 4 (12 - 3p - I/p)

p~= -(p -1).P~~)=~I(-14+lip +3/p)+2v(l-p) 1
P~:)= 12S(IS+99p -99/p -IS/p2)-3v/4(p -I/p)

(A6e)

(A6f)

For the case p = I. the coefficients become;

P: =O.all i.j =r. O.Z

P~)= -I. PI: = -2v,P<:, = _I.P~O)=P~)=P~=O

PW =2 + v - 4v 2, P~~) =I - 2v, P~) =-~ (I - 2v), P~) =1- v1
P~)=p~)=o

(A7a)

(A7b)

(A7c)


